Eu te Ouço: Sobre o Conhecimento Humano e a Inteligência Vocal
DOI:
https://doi.org/10.21814/rlec.6316Palavras-chave:
tecnologia vocal, interação humana-computador, computação afetiva, modelos de linguagem de grande porteResumo
Esta entrevista explora a agência incorporada e as dinâmicas em evolução da criação de conhecimento através do envolvimento prático e experimental com sistemas de inteligência artificial (IA) conversacional. Com base na arqueologia dos média, na teoria dos média e nos estudos de ciência e tecnologia, examina-se de que forma o surgimento de interfaces linguísticas desestabiliza as distinções entre utilizador e sistema, colapsando as fronteiras entre modos humanos e artificiais de expressão e compreensão. Enquadrado numa metodologia de investigação artística, o projeto envolve-se criticamente com a transição em curso para formas de inquirição mediadas por máquinas e tecnologias vocais, analisando de que modo essas tecnologias reconfiguram as condições epistémicas, linguísticas e ontológicas do conhecimento e da investigação. Ao afastar-se da interação mediada por teclado, o processo enfatiza o desligamento do corpo da interface máquina e a crescente fluidez da correspondência entre humano e computador através da tecnologia vocal. Reconhecendo a crescente incerteza quanto à origem e autonomia decorrentes desta transformação tecnológica, a investigação destaca a autoria indeterminada tanto como desafio metodológico como eixo teórico, sublinhando as implicações para a responsabilidade académica e a ética dos dados. A experimentação prática é utilizada como ferramenta para rastrear os vetores infraestruturais, afetivos e retóricos através dos quais o discurso automatizado inteligente influencia a produção de conhecimento. Ao examinar este processo, o estudo contribui para os debates em curso sobre verificação, confiança e negociação social da informação induzidos por agentes avançados de IA conversacional. Em termos gerais, o artigo sustenta que as tecnologias vocais não se limitam a transmitir conteúdo, mas configuram ativamente as condições sob as quais o conhecimento é produzido, autenticado e circulado.
Downloads
Referências
*Afzal, S., Khan, H. A., Khan, I. U., Piran, M. J., & Lee, J. W. (2023). A comprehensive survey on affective computing; challenges, trends, applications, and future directions. arXiv. https://doi.org/10.48550/arXiv.2305.07665
Agrawal, K. (2010). To study the phenomenon of the Moravec’s paradox. arXiv. https://doi.org/10.48550/arXiv.1012.3148
Ardelt, M. (2004). Wisdom as expert knowledge system: A critical review of a contemporary operationalization of an ancient concept. Human Development, 47(5), 257–285. https://doi.org/10.1159/000079154
Arora, S. (2025, April 28). OpenAI CEO Sam Altman admits ChatGPT 4O’s ‘annoying’ personality needs work: “We are working on fixes”. Times Now. https://www.timesnownews.com/technology-science/openai-ceo-sam-altman-admits-chatgpt-4os-annoying-personality-needs-work-we-are-working-on-fixes-article-151522930
Baltes, P. B., & Staudinger, U. M. (2000). Wisdom: A metaheuristic (pragmatic) to orchestrate mind and virtue toward excellence. American Psychologist, 55(1), 122–136. https://doi.org/10.1037/0003-066x.55.1.122
Bandura, A. (2001). Social cognitive theory: An agentic perspective. Annual Review of Psychology, 52, 1–26. https://doi.org/10.1146/annurev.psych.52.1.1
Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., Sydney, V. A., Bernstein, M. S., Bohg, J., Bosselut, A., Brunskill, E., Brynjolfsson, E., Buch, S., Card, D., Castellon, R., Chatterji, N., Chen, A., Creel, K., Davis, J. Q., Demszky, D., . . . Liang, P. (2021). On the opportunities and risks of foundation models. arXiv. https://doi.org/10.48550/arXiv.2108.07258
*Chervonyi, Y., Trinh, T. H., Olšák, M., Yang, X., Nguyen, H., Menegali, M., Jung, J., Verma, V., Le, Q., V., & Luong, T. (2025). Gold-medalist performance in solving Olympiad geometry with AlphaGeometry2. arXiv. https://arxiv.org/html/2502.03544v1
*Chomsky, N. (2006). Language and mind. Cambridge University Press. https://doi.org/10.1017/cbo9780511791222. (Original work published 1968)
Clarke, L. (2022, November 12). When AI can make art – what does it mean for creativity? The Guardian. https://www.theguardian.com/technology/2022/nov/12/when-ai-can-make-art-what-does-it-mean-for-creativity-dall-e-midjourney
Cohn, M., Pushkarna, M., Olanubi, G. O., Moran, J. M., Padgett, D., Mengesha, Z., & Heldreth, C. (2024). Believing anthropomorphism: Examining the role of anthropomorphic cues on trust in large language models. arXiv. https://doi.org/10.48550/arXiv.2405.06079
*Connolly, F. F., Hjerm, M., & Kalucza, S. (2025). When will AI transform society? Swedish public predictions on AI development timelines. arXiv. https://doi.org/10.48550/arXiv.2504.04180
Crawford, K. (2021). Atlas of AI: Power, politics, and the planetary costs of artificial intelligence. Yale University Press. https://doi.org/10.2307/j.ctv1ghv45t
Crystal, D. (2008). Dictionary of linguistics and phonetics. Wiley-Blackwell. https://doi.org/10.1002/9781444302776
Dada, E. G., Bassi, J. S., Chiroma, H., Abdulhamid, S. M., Adetunmbi, A. O., & Ajibuwa, O. E. (2019). Machine learning for email spam filtering: Review, approaches and open research problems. Heliyon, 5(6), e01802. https://doi.org/10.1016/j.heliyon.2019.e01802
De Waal, F. (2016). Are we smart enough to know how smart animals are? W. W. Norton & Company.
*Dreyfus, H. (2014). 20. What computers can’t do: A critique of artificial reason. In B. Williams (Ed.), Essays and reviews: 1959-2002 (pp. 90–100). Princeton University Press. https://doi.org/10.1515/9781400848393-021
Eidsheim, N. S. (2019). The race of sound: Listening, timbre, and vocality in African American music. Duke University Press. https://doi.org/10.2307/j.ctv11hpntq
Epley, N., Waytz, A., & Cacioppo, J. T. (2007). On seeing human: A three-factor theory of anthropomorphism. Psychological Review, 114(4), 864–886. https://doi.org/10.1037/0033-295x.114.4.864
*Farrell, T. J. (1985). Orality and literacy: The technologizing of the word [Book review of Orality and literacy: The technologizing of the word, by W. J. Ong]. College Composition and Communication, 36(3), 363–365. https://doi.org/10.2307/357987
Fedorenko, E., & Varley, R. (2016). Language and thought are not the same thing: Evidence from neuroimaging and neurological patients. Annals of the New York Academy of Sciences, 1369, 132–153. https://doi.org/10.1111/nyas.13046
*Floridi, L., & Illari, P. (Eds.). (2014). The philosophy of information quality. Springer Cham. https://doi.org/10.1007/978-3-319-07121-3
*Freire, S. K., Wang, C., & Niforatos, E. (2024). Conversational assistants in knowledge-intensive contexts: An evaluation of LLM- versus intent-based systems. arXiv. https://doi.org/10.48550/arXiv.2402.04955
French, R. M. (1990). Subcognition and the limits of the Turing test. Mind, XCIX(393), 53–65. https://doi.org/10.1093/mind/XCIX.393.53
Fron, C., & Korn, O. (2019, July 2). A short history of the perception of robots and automata from antiquity to modern times. In O. Korn (Ed.), Social robots: Technological, societal and ethical aspects of human–robot interaction (pp. 1–12). Springer Nature. https://doi.org/10.1007/978-3-030-17107-0_1
*Gardavski, K. (2022). Wittgenstein and LaMDA. The Logical Foresight - Journal for Logic and Science, 2(1), 25–42. https://doi.org/10.54889/issn.2744-208x.2022.2.1.25
Harwell, D. (2019, November 6). A face-scanning algorithm increasingly decides whether you deserve the job. The Washington Post. https://www.washingtonpost.com/technology/2019/10/22/ai-hiring-face-scanning-algorithm-increasingly-decides-whether-you-deserve-job/
*He, L., Qi, X., Liao, M., Cheong, I., Mittal, P., Chen, D., & Henderson, P. (2025). The deployment of end-to-end audio language models should take into account the principle of least privilege. arXiv. https://doi.org/10.48550/arXiv.2503.16833
Hillis, K., Petit, M., & Jarrett, K. (2012). Google and the culture of search. Routledge. https://doi.org/10.4324/9780203846261
Jones, C. R., & Bergen, B. K. (2025). Large language models pass the Turing test. arXiv. https://doi.org/10.48550/arXiv.2503.23674
*Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., & Liu, T. (2024). A survey on hallucination in large language models: principles, taxonomy, challenges, and open questions. ACM Transactions on Office Information Systems. https://doi.org/10.48550/arXiv.2311.05232
*Keat, L. C., & Ying, T. X. (2025). Artificial intelligence-based email spam filtering. Journal of Advanced Research in Artificial Intelligence & It’s Applications, 2(1), 67–75. https://doi.org/10.5281/zenodo.14264139
Kreps, S., McCain, R. M., & Brundage, M. (2022). All the news that’s fit to fabricate: AI-generated text as a tool of media misinformation. Journal of Experimental Political Science, 9(1), 104–117. https://doi.org/10.1017/xps.2020.37
Lakhani, K. (2023, July 17). How can we counteract generative AI’s hallucinations? Digital Data Design Institute at Harvard. https://d3.harvard.edu/how-can-we-counteract-generative-ais-hallucinations/
Leo-Liu, J. (2023). Loving a “defiant” AI companion? The gender performance and ethics of social exchange robots in simulated intimate interactions. Computers in Human Behavior, 141, 107620. https://doi.org/10.1016/j.chb.2022.107620
Lewandowsky, S., Robertson, R. E., & DiResta, R. (2023). Challenges in understanding human-algorithm entanglement during online information consumption. Perspectives on Psychological Science, 19(5), 758–766. https://doi.org/10.1177/17456916231180809
Li, Y. A., Han, C., Raghavan, V. S., Mischler, G., & Mesgarani, N. (2023). StyleTTS 2: Towards human-level text-to-speech through style diffusion and adversarial training with large speech language models. arXiv. https://doi.org/10.48550/arXiv.2306.07691
*Lin, G., Chiang, C., & Lee, H. (2024). Advancing large language models to capture varied speaking styles and respond properly in spoken conversations. arXiv. https://doi.org/10.48550/arXiv.2402.12786
Lovato, S. B., & Piper, A. M. (2019). Young children and voice search: What we know from human-computer interaction research. Frontiers in Psychology, 10, 1–5. https://doi.org/10.3389/fpsyg.2019.00008
Luscombe, R. (2022, June 12). Google engineer put on leave after saying AI chatbot has become sentient. The Guardian. https://www.theguardian.com/technology/2022/jun/12/google-engineer-ai-bot-sentient-blake-lemoine
Manovich, L. (2002). The language of new media. MIT Press.
Matthias, M. (2023, August 25). Why does AI art screw up hands and fingers? Encyclopaedia Britannica. https://www.britannica.com/topic/Why-does-AI-art-screw-up-hands-and-fingers-2230501
*Mikalson, J. D. (2006). (H.) Bowden classical Athens and the Delphic Oracle: Divination and democracy. Pp. xviii + 188, maps, ills. Cambridge: Cambridge University Press, 2005. ISBN: 0-521-53081-4 (0-521-82373-0 hbk). The Classical Review, 56(2), 406–407. https://doi.org/10.1017/s0009840x06002150
Miller, T., Paloque-Bergès, C., & Dame-Griff, A. (2022). Remembering Netizens: an interview with Ronda Hauben, co-author of Netizens: on the history and impact of Usenet and the internet (1997). Internet Histories, 7(1), 76–98. https://doi.org/10.1080/24701475.2022.2123120
Noble, S. U. (2018). Algorithms of oppression: How search engines reinforce racism. NYU Press. https://doi.org/10.2307/j.ctt1pwt9w5
O’Donnell, J. (2024, September 24). OpenAI released its advanced voice mode to more people. Here’s how to get it. MIT Technology Review. https://www.technologyreview.com/2024/09/24/1104422/openai-released-its-advanced-voice-mode-to-more-people-heres-how-to-get-it/
OpenAI. (2025a, January 30). Advanced voice mode FAQ. https://help.openai.com/en/articles/9617425-advanced-voice-mode-faq
OpenAI. (2025b, April 25). Response generated by ChatGPT (version 4o) [Large language model]. https://openai.com/policies/usage-policies/?utm
Parisi, L. (2019a). Machine sirens and vocal intelligence. In S. Goodman & U. Erlmann (Eds.), Unsound undead (pp. 53–56). MIT Press.
Parisi, L. (2019b). The alien subject of AI. Subjectivity, 12(1), 27–48. https://doi.org/10.1057/s41286-018-00064-3
Pinker, S. (1989). Learnability and cognition: The acquisition of argument structure. MIT Press. https://doi.org/10.7551/mitpress/4158.001.0001
Pillai, M. (2024). The Evolution of Customer Service: Identifying the Impact of Artificial Intelligence on Employment and Management in Call Centres. Journal of Business Management and Information Systems, (special issue), 52–55.
*Quijano, A., & Ennis, M. (2000). Coloniality of power, eurocentrism, and Latin America. Nepantla: Views from South, 1(3), 533–580. https://muse.jhu.edu/article/23906
*Quinn, K. (2014). Google and the culture of search [Review of the book Google and the culture of search, by K. Hillis, M. Petit, & K. Jarrett]. Journal of Broadcasting & Electronic Media, 58(3), 473–475. https://doi.org/10.1080/08838151.2014.935943
*Raman, R., Kowalski, R., Achuthan, K., Iyer, A., & Nedungadi, P. (2025). Navigating artificial general intelligence development: Societal, technological, ethical, and brain-inspired pathways. Scientific Reports, 15, 8443. https://doi.org/10.1038/s41598-025-92190-7
Schreibelmayr, S., & Mara, M. (2022). Robot voices in daily life: Vocal human likeness and application context as determinants of user acceptance. Frontiers in Psychology, 13, 787499. https://doi.org/10.3389/fpsyg.2022.787499
sculpting_Noise. (2025). I hear you: On human knowledge and vocal intelligence [Audio work]. SoundCloud. https://soundcloud.com/user-432639751-504934319/i-hear-you-on-human-knowledge-and-vocal-intelligence
Sheth, A., Roy, K., & Gaur, M. (2023). Neurosymbolic AI -- Why, what, and how. arXiv. https://doi.org/10.48550/arXiv.2305.00813
*Shum, H., He, X., & Li, D. (2018). From Eliza to XiaoIce: Challenges and opportunities with social chatbots. arXiv. https://doi.org/10.48550/arXiv.1801.01957
Sindoni, M. G. (2024). The femininization of AI-powered voice assistants: Personification, anthropomorphism and discourse ideologies. Discourse, Context & Media, 62, 100833. https://doi.org/10.1016/j.dcm.2024.100833
Sternberg, R. J. (2012). Intelligence. Dialogues in Clinical Neuroscience, 14(1), 19–27. https://doi.org/10.31887/dcns.2012.14.1/rsternberg
Sullivan, D. (2013, June 28). A eulogy for AltaVista, the Google of its time. Search Engine Land. https://searchengineland.com/altavista-eulogy-165366
*Sun, H., Zhao, L., Wu, Z., Gao, X., Hu, Y., Zuo, M., Zhang, W., Han, J., Liu, T., & Hu, X. (2024). Brain-like functional organization within large language models. arXiv. https://doi.org/10.48550/arXiv.2410.19542
X Technologies. (2025, February 21). Introducing NEO gamma. https://www.1x.tech/discover/introducing-neo-gamma
Takahashi, M., & Overton, W. F. (2005). Cultural foundations of wisdom: An integrated developmental approach. In R. J. Sternberg & J. Jordan (Eds.), A handbook of wisdom: Psychological perspectives (pp. 32–60). Cambridge University Press. https://doi.org/10.1017/CBO9780511610486.003
*Tomasello, M. (2003). Constructing a language: A usage-based theory of language acquisition. Harvard University Press. https://doi.org/10.2307/j.ctv26070v8
Turing, A. (2004). Computing machinery and intelligence (1950). In B J Copeland (Ed.), The essential Turing (pp. 433–464). Oxford university Press. https://doi.org/10.1093/oso/9780198250791.003.0017
Wang, J., Ma, W., Sun, P., Zhang, M., & Nie, J. (2024). Understanding user experience in large language model interactions. arXiv. https://doi.org/10.48550/arXiv.2401.08329
Wittgenstein, L. (2009). Philosophical investigations (P. M. S. Hacker & J. Schulte, Eds.; G. E. M. Anscombe, Trans.; 4th ed.). Wiley-Blackwell. (Original work published 1953)
*Yamaguchi, S., & Fukuda, T. (2023). On the limitation of diffusion models for synthesizing training datasets. arXiv. https://doi.org/10.48550/arXiv.2311.13090
Yaqub, M. Z., & Alsabban, A. (2023). Knowledge sharing through social media platforms in the silicon age. Sustainability, 15(8), 6765. https://doi.org/10.3390/su15086765
Yeh, K.-C., Chi, J.-A., Lian, D.-C., Hsieh, S.-K. (2023). Evaluating interfaced LLM bias. In J.-L. Wu & M.-H. Su (Eds.), Proceedings of the 35th Conference on Computational Linguistics and Speech Processing (ROCLING 2023) (pp. 292–299). The Association for Computational Linguistics and Chinese Language Processing (ACLCLP). https://aclanthology.org/2023.rocling-1.37/
*Zou, A., Wang, Z., Carlini, N., Nasr, M., Kolter, J. Z., & Fredrikson, M. (2023). Universal and transferable adversarial attacks on aligned language models. arXiv. https://doi.org/10.48550/arXiv.2307.15043
Downloads
Publicado
Como Citar
Edição
Secção
Licença
Direitos de Autor (c) 2025 Moana Ava Holenstein

Este trabalho encontra-se publicado com a Licença Internacional Creative Commons Atribuição 4.0.
Os autores são titulares dos direitos de autor, concedendo à revista o direito de primeira publicação. O trabalho é licenciado com uma Licença Creative Commons - Atribuição 4.0 Internacional.